Cold and hunger induce diurnality in a nocturnal mammal.
نویسندگان
چکیده
The mammalian circadian system synchronizes daily timing of activity and rest with the environmental light-dark cycle. Although the underlying molecular oscillatory mechanism is well studied, factors that influence phenotypic plasticity in daily activity patterns (temporal niche switching, chronotype) are presently unknown. Molecular evidence suggests that metabolism may influence the circadian molecular clock, but evidence at the level of the organism is lacking. Here we show that a metabolic challenge by cold and hunger induces diurnality in otherwise nocturnal mice. Lowering ambient temperature changes the phase of circadian light-dark entrainment in mice by increasing daytime and decreasing nighttime activity. This effect is further enhanced by simulated food shortage, which identifies metabolic balance as the underlying common factor influencing circadian organization. Clock gene expression analysis shows that the underlying neuronal mechanism is downstream from or parallel to the main circadian pacemaker (the hypothalamic suprachiasmatic nucleus) and that the behavioral phenotype is accompanied by phase adjustment of peripheral tissues. These findings indicate that nocturnal mammals can display considerable plasticity in circadian organization and may adopt a diurnal phenotype when energetically challenged. Our previously defined circadian thermoenergetics hypothesis proposes that such circadian plasticity, which naturally occurs in nocturnal mammals, reflects adaptive maintenance of energy balance. Quantification of energy expenditure shows that diurnality under natural conditions reduces thermoregulatory costs in small burrowing mammals like mice. Metabolic feedback on circadian organization thus provides functional benefits by reducing energy expenditure. Our findings may help to clarify relationships between sleep-wake patterns and metabolic phenotypes in humans.
منابع مشابه
Diurnality as an energy-saving strategy: energetic consequences of temporal niche switching in small mammals.
Endogenous daily (circadian) rhythms allow organisms to anticipate daily changes in the environment. Most mammals are specialized to be active during the night (nocturnal) or day (diurnal). However, typically nocturnal mammals become diurnal when energetically challenged by cold or hunger. The circadian thermo-energetics (CTE) hypothesis predicts that diurnal activity patterns reduce daily ener...
متن کاملNight and day: distinct retinohypothalamic innervation patterns predict the development of nocturnality and diurnality in two murid rodent species
How does the brain develop differently to support nocturnality in some mammals, but diurnality in others? To answer this question, one might look to the suprachiasmatic nucleus (SCN), the pacemaker of the mammalian brain, which is required for all circadian biological and behavioral rhythms. Light arriving at the retina entrains the SCN to the daily light-dark cycle via the retinohypothalamic t...
متن کاملBiophysical modeling of the temporal niche: from first principles to the evolution of activity patterns.
Most mammals can be characterized as nocturnal or diurnal. However infrequently, species may overcome evolutionary constraints and alter their activity patterns. We modeled the fundamental temporal niche of a diurnal desert rodent, the golden spiny mouse, Acomys russatus. This species can shift into nocturnal activity in the absence of its congener, the common spiny mouse, Acomys cahirinus, sug...
متن کاملThe relationship between the golden spiny mouse circadian system and its diurnal activity: an experimental field enclosures and laboratory study.
Examples of animals that switch activity times between nocturnality and diurnality in nature are relatively infrequent. Furthermore, the mechanism for switching activity time is not clear: does a complete inversion of the circadian system occur in conjunction with activity pattern? Are there switching centers downstream from the internal clock that interpret the clock differently? Or does the s...
متن کاملInvasion of Ancestral Mammals into Dim-light Environments Inferred from Adaptive Evolution of the Phototransduction Genes
Nocturnality is a key evolutionary innovation of mammals that enables mammals to occupy relatively empty nocturnal niches. Invasion of ancestral mammals into nocturnality has long been inferred from the phylogenetic relationships of crown Mammalia, which is primarily nocturnal, and crown Reptilia, which is primarily diurnal, although molecular evidence for this is lacking. Here we used phylogen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 42 شماره
صفحات -
تاریخ انتشار 2014